930=-16x^2+1700

Simple and best practice solution for 930=-16x^2+1700 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 930=-16x^2+1700 equation:



930=-16x^2+1700
We move all terms to the left:
930-(-16x^2+1700)=0
We get rid of parentheses
16x^2-1700+930=0
We add all the numbers together, and all the variables
16x^2-770=0
a = 16; b = 0; c = -770;
Δ = b2-4ac
Δ = 02-4·16·(-770)
Δ = 49280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{49280}=\sqrt{64*770}=\sqrt{64}*\sqrt{770}=8\sqrt{770}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{770}}{2*16}=\frac{0-8\sqrt{770}}{32} =-\frac{8\sqrt{770}}{32} =-\frac{\sqrt{770}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{770}}{2*16}=\frac{0+8\sqrt{770}}{32} =\frac{8\sqrt{770}}{32} =\frac{\sqrt{770}}{4} $

See similar equations:

| (3x-5)+(=-4+1) | | -34=(3x-6)3 | | 0.5(x+2)=2x | | 48=12t−24 | | -3m-6=-18 | | 750=-16x^2+1700 | | 9x+7=4x+23 | | w+33/8=-13/8 | | 2n+13=6n-7 | | 128-4x=92 | | 5.8z,z=50 | | 3x=10x-8 | | 12-3x=34 | | -11x+-4=-3x+60 | | 2a-6=2a+3 | | 2x-8=3x+9x | | 2t+1=7t+15 | | 1/5x+10=1/2x+20 | | -6+4x=-4x+10 | | 13t+6-6t=34 | | 10x+4x=108 | | (2x+7)+(2x−16)+(6x+19)=180 | | 9(t=2)=3(t-2) | | 10x+5=-5(5+x) | | -2x-20=-14 | | -6x-20=-2+4-12x | | 12x+22=2x-8 | | 4x-7=x/2 | | 6+1-k=256 | | 4x+-10=x+30 | | 0.75n=16 | | 2n-3=2+3n |

Equations solver categories